Linear classification

Date:2011-05-29 (last modified), 2011-05-29 (created)

Fisher's Linear Discriminant

The first example shows the implementation of Fisher's Linear Classifier for 2-class problem and this algorithm is precisely described in book "Pattern Recognition and Machine Learning" by Christopher M Bishop (p 186, Section 4.1). The main idea of this algorithm is that we try to reduce the dimensionality of input vector X and project it onto 1D space using the equation y=W.T X where W.T - row vector of weights, and we adjust the weight vector W and choose the projection that maximizes the class separation. The following program use the famouse data set Iris with 150 number of instances and 4 attributes (4D space), target vector which contains labels: "Iris-setosa", "Iris-virginica", "Iris-versicolor", therefore, we have 3 classes, but, in this case, we may assume that we have class 1 with labels "Iris-setosa" and class 2 with other instances. Iris data set is available here: http://archive.ics.uci.edu/ml/datasets/Iris/ or here (comma separated format) - bezdekIris.data.txt

In [ ]:
#! python
from __future__ import division
import numpy as np
import matplotlib.pyplot as plt

def read_data():
  f=open("Iris.txt", 'r')
  lines=[line.strip() for line in f.readlines()]
  f.close()

  lines=[line.split(",") for line in lines if line]

  class1=np.array([line[:4] for line in lines if line[-1]=="Iris-setosa"], dtype=np.float)

  class2=np.array([line[:4] for line in lines if line[-1]!="Iris-setosa"], dtype=np.float)

  return class1, class2


def main():

  class1, class2=read_data()

  mean1=np.mean(class1, axis=0)
  mean2=np.mean(class2, axis=0)

  #calculate variance within class
  Sw=np.dot((class1-mean1).T, (class1-mean1))+np.dot((class2-mean2).T, (class2-mean2))

  #calculate weights which maximize linear separation
  w=np.dot(np.linalg.inv(Sw), (mean2-mean1))

  print "vector of max weights", w
  #projection of classes on 1D space
  plt.plot(np.dot(class1, w), [0]*class1.shape[0], "bo", label="Iris-setosa")
  plt.plot(np.dot(class2, w), [0]*class2.shape[0], "go", label="Iris-versicolor and Iris-virginica")
  plt.legend()

  plt.show()

main()

Probabilistic Generative Model

This program is the implementation of Probabilistic Generative Model for K-class problem which is also described in book "Pattern Recognition and Machine Learning" by Christopher M Bishop (p 196, Section 4.2). We try to learn the class-conditional densities (likelihood) p(x|Ck) for each class K, and prior probability density p(Ck), then we can compute posterior probability p(Ck|x) by using Bayes rule. Here we assume that p(x|Ck) are 4D Gaussians with parameters uk - mean vector of class K, Sk

  • covariance matrix of class K, also p(Ck) for all k is 1/3. Then we compute so called quantities ak (variables pc's in the program) and if ak>>aj for all k!=j then assign p(Ck|x)=1 and p(Cj|x)=0.
In [ ]:
#! python
from __future__ import division
import numpy as np
import matplotlib.pyplot as plt
import math

def read_data():
  f=open("Iris.txt", 'r')
  lines=[line.strip() for line in f.readlines()]
  f.close()

  lines=[line.split(",") for line in lines if line]

  data=np.array([line[:4] for line in lines if line], dtype=np.float)

  class1=np.array([line[:4] for line in lines if line[-1]=="Iris-setosa"], dtype=np.float)

  class2=np.array([line[:4] for line in lines if line[-1]=="Iris-virginica"], dtype=np.float)

  class3=np.array([line[:4] for line in lines if line[-1]=="Iris-versicolor"], dtype=np.float)

 #list of class labels
  labels=[]
  for line in lines:
   strt=line.pop()
   labels.append(strt)
  #create array of labels
  labels=[line.split(",") for line in labels if line]
  t=np.zeros(shape=(150, 3))
  #create target vector encoded according to 1-of-K scheme
  for i in xrange(len(data)):
   if labels[i]==["Iris-setosa"]: t[i][0]=1
   elif labels[i]==["Iris-versicolor"]: t[i][1]=1
   elif labels[i]==["Iris-virginica"]: t[i][2]=1

  return class1, class2, class3, data, t

def gaussian(x, mean, cov):
  xm=np.reshape((x-mean), (-1, 1))
  px=1/(math.pow(2.0*math.pi, 2))*1/math.sqrt(np.linalg.det(cov))*math.exp(-(np.dot(np.dot(xm.T, np.linalg.inv(cov)), xm))/2)
  return px

def main():
 class1, class2, class3, data, t=read_data()

 count=np.zeros(shape=(150,1))
 t_assigned=np.zeros(shape=(150, 3))
 cov=np.zeros(shape=(3, 4, 4))
 mean=np.zeros(shape=(3, 4))

  #compute means for each class
 mean1=class1.mean(axis=0)
 mean2=class2.mean(axis=0)
 mean3=class3.mean(axis=0)
  #compute covariance matrices, such that the columns are variables and rows are observations of variables
 cov1=np.cov(class1, rowvar=0)
 cov2=np.cov(class2, rowvar=0)
 cov3=np.cov(class3, rowvar=0)

#compute gaussian likelihood functions p(x|Ck) for each class
 for i in xrange(len(data)):
     px1=(1/3.0)*gaussian(data[i], mean1, cov1)
     px2=(1/3.0)*gaussian(data[i], mean2, cov2)
     px3=(1/3.0)*gaussian(data[i], mean3, cov3)
     m=np.max([px1, px2, px3])
 #compute posterior probability p(Ck|x) assuming that p(x|Ck) is gaussian and the entire expression is wrapped by sigmoid function 
     pc1=((math.exp(px1)*math.exp(-m))*math.exp(m))/((math.exp(px2)*math.exp(-m)+math.exp(px3)*math.exp(-m))*math.exp(m))
     pc2=((math.exp(px2)*math.exp(-m))*math.exp(m))/((math.exp(px1)*math.exp(-m)+math.exp(px3)*math.exp(-m))*math.exp(m))
     pc3=((math.exp(px3)*math.exp(-m))*math.exp(m))/((math.exp(px1)*math.exp(-m)+math.exp(px2)*math.exp(-m))*math.exp(m))
 #assign p(Ck|x)=1 if p(Ck|x)>>p(Cj|x) for all j!=k
     if pc1>pc2 and pc1>pc3: t_assigned[i][0]=1
     elif pc3>pc1 and pc3>pc2: t_assigned[i][1]=1
     elif pc2>pc1 and pc2>pc3: t_assigned[i][2]=1
 #count the number of misclassifications
     for j in xrange(3):
      if t[i][j]-t_assigned[i][j]!=0: count[i]=1

 cov=[cov1, cov2, cov3]
 mean=[mean1, mean2, mean3]

 t1=np.zeros(shape=(len(class1), 1))
 t2=np.zeros(shape=(len(class2), 1))
 t3=np.zeros(shape=(len(class3), 1))
 for i in xrange(len(data)):
  for j in xrange(len(class1)):
   if t_assigned[i][0]==1: t1[j]=1
   elif t_assigned[i][1]==1: t2[j]=2
   elif t_assigned[i][2]==1: t3[j]=3

 plt.plot(t1, "bo", label="Iris-setosa")
 plt.plot(t2, "go", label="Iris-versicolor")
 plt.plot(t3, "ro", label="Iris-virginica")
 plt.legend()
 plt.show()

 print "number of misclassifications", sum(count), "assigned labels to data points", t_assigned, "target data", t

main()

This program resulted in the number of misclassifications = 3 out of all 150 instances

Section author: DmitriyRybalkin

Attachments