Communication theory¶
Date: | 2009-06-06 (last modified), 2009-06-06 (created) |
---|
These two examples illustrate simple simulation of a digital BPSK modulated communication system where only one sample per symbol is used, and signal is affected only by AWGN noise.
In the first example, we cycle through different signal to noise values, and the signal length is a function of theoretical probability of error. As a rule of thumb, we want to count about 100 errors for each SNR value, which determines the length of the signal (and noise) vector(s).
#!/usr/bin/python
# BPSK digital modulation example
# by Ivo Maljevic
from numpy import *
from scipy.special import erfc
import matplotlib.pyplot as plt
SNR_MIN = 0
SNR_MAX = 9
Eb_No_dB = arange(SNR_MIN,SNR_MAX+1)
SNR = 10**(Eb_No_dB/10.0) # linear SNR
Pe = empty(shape(SNR))
BER = empty(shape(SNR))
loop = 0
for snr in SNR: # SNR loop
Pe[loop] = 0.5*erfc(sqrt(snr))
VEC_SIZE = ceil(100/Pe[loop]) # vector length is a function of Pe
# signal vector, new vector for each SNR value
s = 2*random.randint(0,high=2,size=VEC_SIZE)-1
# linear power of the noise; average signal power = 1
No = 1.0/snr
# noise
n = sqrt(No/2)*random.randn(VEC_SIZE)
# signal + noise
x = s + n
# decode received signal + noise
y = sign(x)
# find erroneous symbols
err = where(y != s)
error_sum = float(len(err[0]))
BER[loop] = error_sum/VEC_SIZE
print 'Eb_No_dB=%4.2f, BER=%10.4e, Pe=%10.4e' % \
(Eb_No_dB[loop], BER[loop], Pe[loop])
loop += 1
#plt.semilogy(Eb_No_dB, Pe,'r',Eb_No_dB, BER,'s')
plt.semilogy(Eb_No_dB, Pe,'r',linewidth=2)
plt.semilogy(Eb_No_dB, BER,'-s')
plt.grid(True)
plt.legend(('analytical','simulation'))
plt.xlabel('Eb/No (dB)')
plt.ylabel('BER')
plt.show()
In the second, slightly modified example, the problem of signal length growth is solved by braking a signal into frames.Namely, the number of samples for a given SNR grows quickly, so that the simulation above is not practical for Eb/No values greater than 9 or 10 dB.
#!/usr/bin/python
# BPSK digital modulation: modified example
# by Ivo Maljevic
from scipy import *
from math import sqrt, ceil # scalar calls are faster
from scipy.special import erfc
import matplotlib.pyplot as plt
rand = random.rand
normal = random.normal
SNR_MIN = 0
SNR_MAX = 10
FrameSize = 10000
Eb_No_dB = arange(SNR_MIN,SNR_MAX+1)
Eb_No_lin = 10**(Eb_No_dB/10.0) # linear SNR
# Allocate memory
Pe = empty(shape(Eb_No_lin))
BER = empty(shape(Eb_No_lin))
# signal vector (for faster exec we can repeat the same frame)
s = 2*random.randint(0,high=2,size=FrameSize)-1
loop = 0
for snr in Eb_No_lin:
No = 1.0/snr
Pe[loop] = 0.5*erfc(sqrt(snr))
nFrames = ceil(100.0/FrameSize/Pe[loop])
error_sum = 0
scale = sqrt(No/2)
for frame in arange(nFrames):
# noise
n = normal(scale=scale, size=FrameSize)
# received signal + noise
x = s + n
# detection (information is encoded in signal phase)
y = sign(x)
# error counting
err = where (y != s)
error_sum += len(err[0])
# end of frame loop
##################################################
BER[loop] = error_sum/(FrameSize*nFrames) # SNR loop level
print 'Eb_No_dB=%2d, BER=%10.4e, Pe[loop]=%10.4e' % \
(Eb_No_dB[loop], BER[loop], Pe[loop])
loop += 1
plt.semilogy(Eb_No_dB, Pe,'r',linewidth=2)
plt.semilogy(Eb_No_dB, BER,'-s')
plt.grid(True)
plt.legend(('analytical','simulation'))
plt.xlabel('Eb/No (dB)')
plt.ylabel('BER')
plt.show()
Section author: IvoMaljevic, GaelVaroquaux
Attachments